
Search Result Clustering via Randomized
Partitioning of Query-Induced Subgraphs

Aleksandar Bradic
Faculty of Electrical Engineering, Belgrade

Email: abradic@acm.org

Abstract—In this paper, we present an approach to search
result clustering, using partitioning of underlying link graph.
We define the notion of ”query-induced subgraph” and
formulate the problem of search result clustering as a problem
of efficient partitioning of given subgraph into topic-related
clusters. Also, we propose a novel algorithm for approximative
partitioning of such graph, which results in cluster quality
comparable to the one obtained by deterministic algorithms,
while operating in more efficient computation time, suitable
for practical implementations. Finally, we present a practical
clustering search engine developed as a part of this research
and use it to get results about real-world performance of
proposed concepts.

Index Terms—Information Search and Retrieval, Graph
Clustering, Randomized Algorithms, Web Measurement

I. INTRODUCTION

Efficient representation of search results poses a signif-
icant challenge for modern search engines. The widelly-
accepted score-based model [1], although quite effective in
the general case of search for the best document matching
the given query, is usually insufficient in situations which
require representation of larger set of relevant results. This
is especially true in the case of clustering and exploratory
search engines, which focus not only on representation of
the relevance, but also the way the results are related and
their organization into clusters of related documents.

Clustering based on document information content has
been a well studied topic in Information Retrieval (IR).
Standard IR clustering methods, based on the cluster
hypothesis [2], usually operate by calculating appropri-
ate content-based relevance values and imposing certain
similarity metric, have been accepted by Search Engine
community and implemented in a number of real-world
clustering engines (Vivisimo, Carrot Clustering Engine,
Mooter, Clusty). Still, we can observe that clustering Web
data in this manner fails to capture the essential component
of Web documents, which is the hyperlink information,
reflected in link graph, which describes the explicit way
in which the documents are connected. A lot of algorithms
utilize this structure to extract information about document
relevance (PageRank [1]), and community structure (HITS
[3]). Great success of these algorithms, indicated the signif-
icance of link structure in Web data analysis, and suggested
extension of such concept to other related problems, like
the problem of community detection [3], and Web data
clustering [4]. However, although there are significant
results in the area of link-based Web data clusterings, im-
plementing such algorithms in practical search engine still
poses a significant challenge, primarly due to the fact that,
unlike IR-based methods, which operate on set of values
precomputed for each document, graph-based algorithms

operate on dynamical query-dependent representation of
entire link graph, which makes precomputation impossible
and problem both computationally and space-intensive. As
a result of this, currently there are no real-world clustering
engines that implement search result clustering using the
link-graph approach.

In this paper, we propose a relaxation of the problem
of search result clustering from the problem of clustering
the entire graph to the domain of query-induced sugraph,
representing a subgraph generated by given search query
and show the validity of such proposal by determining that
the essential structural properties of the entire graph are still
preserved in given subgraph. Further, we propose a novel
algorithm for approximative clustering of such subgraphs,
which enables us more space and computationally efficient
clustering, with variable margin of error, suitable for imple-
mentation in real-world search engines. Finally, we present
a search engine called randomNode, implemented as a part
of this research, which demonstrates usability of proposed
concepts in real-world application.

II. RELATED WORK

In [5], authors perform the first analysis of the general
structure of the Web, and determine that node degree
distribution follows a simple power-law of the form k−θ,
with θ = 2.1 for in-degree and θ = 2.7, for out-degree. In
[6], a single subset of Web Graph is analyzed - the Web
of a single country (Web of Spain) and similar distribution
is observed, with θ = 2.11 for in-degree and θ = 2.84 for
out-degree, validating the scale-free structure of the Web
Graph and indicating that the link distribution is invariant
to the change of scale (we use this idea in proposing the
concept of query-induced subgraphs). Complete statistical
analysis of topic-related link graphs, generated in social
networks, is given in [7]. Authors observe the power
law distribution of node degrees and propose power law
based on truncated-log-normal hypothesis. Finally, paper
[8] gives a complete description of methods for estimating
power-law distribution parameters from empirical data.

General overview of graph clustering algorithms and
appropriate metrics for determining cluster quality is given
in [9]. Efficient graph clustering algorithms vary in com-
putational complexity from O(n3), in the case of recursive
partitioning, to O(nlogn) in the case of multilevel clus-
tering algorithm described in [10]. However, all of given
algorithms operate in O(n2) space complexity, as they
require availability of entire graph representation, making it
hard for implementation on the scale of n found in practical
problems.

771

16th Telecommunications forum TELFOR 2008 Serbia, Belgrade, November 25-27, 2008.

III. QUERY-INDUCED SUBGRAPHS

A. Definition

Let the hyperlink graph be a graph G = (V,E), where
V is a set of vertices representing all the documents in the
search engine index, and E is a set of edges representing
hyperlinks between all the documents.

We define Query-Induced Subgraph as a graph Gq =
(Vq, Eq), where Vq ⊂ V is a set of all results matching the
given query q and Eq ⊂ E set of all edges between vertices
from the set Vq . In practice, given subgraph (Gq ⊂ G)
represents the hyperlink graph created from G by keeping
only the documents matching given query and hyperlinks
between the documents in resulting set. We define node
degree as number of links (both inlinks and outlinks) for
each node, and treat it as a measure of information content
contained in link data. Our goal is to show that the node
degree in the given query-induced subgraph, preserves the
same distribution as in the entire graph (anticipated by the
general assumption about scale-free structure of Web and
social networks [5]).

B. Properties

In order to validate the given assumption about degree
distributions, we analyze the dataset obtained as a part of
randomNode clustering engine. Given dataset consists of
data about 1.1 million nodes (representing the subset of .yu
Web), generated by calculating inlink degrees for resulting
sets of 1000 top-frequency queries in randomNode cluster-
ing engine. We analyze the distribution of inlink degrees
for both full graph and induced subgraphs obtained for each
of given queries and test the hypothesis that both graphs
have distribution, commonly found in Internet and social
networks [7] - a power law distribution with β and xmin
parameters, and probability density function of the form :

p(x;β, xmin) =
x−β

ζ(β, xmin)
(1)

where ζ(β, xmin), represents the generalized zeta function
ζ(β, xmin) =

∑∞
n=0(n+ xmin)−β .

We use the method of Maximum Likelihood (ML)
for estimation of distribution parameters, as described in
[8]. The approximate expression for MLE estimator of β
parameter is given by :

β̂ ≡ 1 + n

[∞∑
i=1

ln
xi

xmin − 1
2

]−1

(2)

where xmin, represents the lower bound on the power
law behavior.

Figure 1 shows both the cummulative distribution func-
tion (cdf) of node degrees in entire graph (full line) and
in query-induced subgraphs (dotted line), obtained from
the given dataset, as well as the cdf of fitted power law
distribution. Estimated values for the β using given proce-
dures are shown in Table I, with goodness of estimation
given in terms of standard error. Given error values are
in acceptable regions, confirming the hypothesis that the
inlink distribution observed in given dataset can indeed be
characterized by power-law distribution of the form given
in formula (1).

200 400 600 800 1000

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

indegree of the full graph

cd
f

empirical cdf
power law MLE fit

0 200 400 600 800 1000

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

indegree of the induced subgraph

cd
f

empirical cdf
power law MLE fit

Figure I : full graph and query-induced subgraph link
degree distribution

TABLE I
LINK DISTRIBUTION POWER LAW FIT

median mean β̂ std.error
full graph 3.00 17.96 2.500576 0.001184400

induced subgraph 1.00 9.98 2.533536 0.001531097

Finally, from Table I we observe estimated values of
β = 2.500576 for full graph and β = 2.533536 for induced
subgraph, which validates the proposed concept of scale-
invariance of graph structure. This further indicates that
the essential graph properties (high-degree ”authoritative”
nodes [3] and random walk convergence properties [4]),
existing in the entire graph, are still preserved in the query-
induced subgraph. Hence, we can reduce the dimension
of search result clustering problem, by restating it as a
problem of clustering the query-induced subgraph Gq , cor-
responding to the given query q. Such problem relaxation
enables us to perform computation in much efficient man-
ner, while still preserving essential information contained
in the link structure.

IV. ALGORITHM FOR FAST CLUSTERING USING
RANDOM WALKS ON POWER-LAW GRAPHS

A. Description

We propose an algorithm for graph clustering using
random walks on directed power-law graphs. The algorithm
operates by performing a number of independent random
walks on the link graph and attempts to exploit the specific
structure of common power-law graphs in order to bound
the average walk length. For each walk, we record a
number of times each node was visited, and obtain partial
sets, each containing the nodes visited during the walk and
appropriate visit counts. Finally, we use that info in order to
perform the merge stage of the algorithm, in which we use
pivot nodes (nodes with maximum visit counts), in order
to merge the given partial sets into a number of final sets,
representing the cluster set for a given graph.

B. Algorithm

Let the G(V,E) be the connected, directed graph with
|V | = N and |E| = m. By random walk on graph, we
assume Markov chain Mg , where V represents the set of
states of the chain and P = [pij] is a stochastic matrix,

772

with pij representing transitional probability for any two
states i, j ∈ V , given by :

Pij =
{ 1

d(i) , if ∃(i, j)|(i→ j) ∈ E
0, if otherwise

(3)

and d(i) represents the outdegree of a vertex i.
We define stationary distribution of a Markov chain Mg

corresponding to a given walk on graph G, as a probability
distribution π̄, such that π̄ = π̄ ∗ P , were each entry π̄i is
proportional to the amount of time walk will spend in a
given node. Such distribution is often used as a measure
of importance of given node i. In the undirected case,
the random walk on the graph converges to the stationary
distribution [1], as well as in the case of directed strongly
connected graph [12]. Allthough this does not hold for the
general case of arbitrary walks on power law graphs, it
does hold for the case of strongly connected components
of such graph, which are shown to exist in the general
case of power law graphs [11]. Additionally, we define the
stopping state of random walk on directed graph as a state
corresponding to the terminating node, that is node u such
that 6 ∃v ∈ V |Puv > 0. We define the stopping time of the
walk as a number of steps of Mg it takes for a chain to
reach the stopping state.

Algorithm 1 Random Walk Clustering
Require: Graph G(V,E) and approximation factor K ,

where |V | = N , k ∈ [0, 1] and K = k ∗N
WALK phase:
i← 0
while i ≤ K do
s← rand(1, N)
while s 6= 0 do

if 6 ∃s|s ∈ wi then
wi ← (s, 1)

end if
s(wi)← s(wi) + 1
s← rand(adj); v ∈ adj|∃(s→ v) ∈ E
if adj = {} then
s← 0

end if
end while

end while
we get the walk set W = (w1....wk)

MERGE phase:
for each wi ∈W, i ∈ (1,K):
for each node n ∈ wi:
if ∃s ∈ wk||deg(s)− deg(n)| > Tcm then

we remove (cut) node n from wi
end if
if ∃s ∈ wk||deg(s)− deg(n)| < Tcm then

we perform merge of wi and wm
end if
return C = (w1...wm), m ≤ K - the final set of
clusters in given graph

For the purpose of a given algorithm, we define stopping
condition for given walk either as a condition of process
entering the stopping state, or as a threshold value for the

length of the walk. Due to the nature of the underlying
graph, not every walk will enter the stopping state, since
the loops might occur, therefore we must define additional
maximum walk length L (usualy of O(N) order), which
should prevent infinite loops, yet be large enough for
the walk to capture the sufficient approximation of a
distribution of node visit counts for given walk.

We perform the WALK phase of the algorithm by se-
lecting K = k ∗ N random nodes, where k ∈ (0, 1),
represents the approximation constant of the algorithm, and
performing K walks on graph G. Walks are performed
untill they reach the stopping condition, either by entering
the stopping state or by hitting the maximum walk length.

Finally, in the MERGE size, we sort walks by lenght,
and internally by visit count, and iterate the result set by
performing CUT and MERGE operations, interchangeably.
If, for a given node, there is a walk having visit count
significantly greater than in the current walk, we remove
it (CUT) from given walk, whereas, if there is a walk
having similar visit count for a given walk, we perform
MERGE of two walks based on given (pivot) node. In such
manner, we hope to identify the key (pivot) nodes for every
walk, and perform a join of two walks in case they share
the key nodes. Additionally, by manipulating the threshold
value for cut/merge (Tcm), we can efficiently manipulate
the dimension of the clustering, balancing between cluster
number and cluster size.

C. Analysis

In order to analyze given algorithm, we use results
proved in [11], stating that for a class of power law
graphs with N nodes and exponents in range β ∈ (2, 3)
(which correspond to the general case of Internet, social
and citation networks, such as the dataset analyzed in this
paper), average distance between any two is almost surely
of order O(loglog(N)). In such a graph, it is guaranteed
that there are more than zero terminating nodes, and the
expected average distance between arbitrary node and given
terminating node is of order O(loglog(N)). Therefore, we
can determine that the expected average run length of the
WALK phase is of the O(Nloglog(n)) order. Additionally,
such graphs contain the strongly connected component of
the size nc/loglog(n) [11], therefore, we define the O(N)
maximum walk length in order to cover walks not hitting the
terminating node. This finally results in O(N2) worst case
time for a given algorithm and O(Nloglog(N)) expected
average case time for the WALK phase and for a complete
algorithm (the merge phase can be implemented efficiently
in O(Nloglog(N)) time).

However, although the worst case time of given al-
gorithm is O(N2), both his average running time, and
the fact that by reducing the problem to the induced
subgraph, we operate on N which represents the number
of nodes matching the given query and is significantly
smaller than the total number of nodes in search engine
index. Additionally, given random walk implementation is
much more space efficient, as it only requires storage of
adjacency list for every node (of O(Nlog(N)) order) to
perform random walks and get partial sets, as opposed
to the matrix-based eigenvalue methods, which require
O(N2) space for storage of the entire adjacency matrix.

773

V. RESULTS

As a part of the research, and as a base for ob-
taining practical results, we have created a cluster-
ing search engine called RandomNode, accessible at
http://www.randomnode.com, which performs query-time
clustering of search results by implementing the Ran-
dom Walk Clustering algorithm, proposed in section IV,
implemented on top of the Lucene search library. It
operates on 1.1-million node dataset, represents a sig-
nificant portion of .yu web, generated by performing a
crawl starting at the homepage of the Belgrade University
(http://www.bg.ac.yu).

Figure II : randomNode clustering engine

We use the randomNode clustering engine in order
to analyze the impact of approximation factor K on
the performace of the proposed algorithm. We use the
coverage(C), of a graph clustering C = (C1...Ck), as
as a measure of clustering quality, defined as:

coverage(C) =
m(c)
m

=
m(C)

m(C) + m̄(C)
(4)

where m(C) represents the number of inter-cluster edges,
while m̄(C) represents a number of intra-cluster edges.
Optimal clustering should minimize the m̄(C), as it repre-
sents the size of the cut in the graph performed by given
clustering.

●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●

● ● ●
●

●

●

● ●

●
● ● ● ●

● ●

●

● ● ●
● ● ● ●

●
●

●

●
●

● ●

●

●

● ●

●

●

●

●
●

●

●
● ●

●

●

●

●
● ●

●
● ●

● ●

●

●

●
●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ● ●

●

●

● ● ●
● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

● ●
● ● ● ● ● ● ●

●

● ● ●
●

● ●
● ● ●

●
● ● ●●

● ● ● ● ● ● ● ● ●

●
● ● ● ●

●

●
●

● ●

●
● ●

●

●
● ●

● ● ● ● ● ●

●

●

● ●
● ● ●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

● ● ● ●
●

●

●

●

●

●

●
●

●

●

● ●
●

● ●
● ● ●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

● ●
●●

●

●

●

●
●

●
● ●

●
● ●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

● ●
●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ● ● ●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●
●

●

●

●
● ●

●
●

● ● ●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●
●● ● ● ●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

● ●

●

● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●
● ● ●
● ●
●

●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

● ● ●

●

●

●
●

●

●
● ● ●

● ●
●

● ●

●

● ● ●

●
●●

● ● ● ●

●

●

●
●

●
●

●
● ● ●

●

●

●

● ●
● ● ● ● ●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

● ●

● ●

●

● ●
● ● ● ● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

● ● ●

● ●
●

●

●

● ●

●

●
●

●

● ● ●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ● ● ●
● ●

●
●

●

●
●

●

●

● ●
● ●

●

●

●

●

● ●
●

●
● ● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

● ● ●

●

●

●

●
● ●

●

●
● ●

●

●

●

●
● ●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●
● ●

● ● ● ● ● ●

●

● ●
● ● ●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

● ●
●

●

● ● ●

●

●

●

●

● ● ●
●

●
●

●

●

●

●
●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ●
● ● ● ● ● ● ● ●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●
●

●

● ●
●●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
● ●

●
● ●

● ●
●

●

●

●
● ● ●

● ●
● ● ●

●

●

●
● ●

● ● ●
●

●

●
●

●

● ● ● ●
● ●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●
● ●

● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ●

●

● ●
● ● ● ● ● ●

●

● ● ●

●

●

●

● ● ●
●

● ●

●

●
● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

● ●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●
●

●

●
● ● ● ● ● ● ● ●

●

● ● ●
●

● ●
●

●

●

●

●

●

● ●

● ●
● ●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

● ● ●
● ●

●

●

●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

● ●
●

●
● ●

●

●

● ●

● ●
● ●

● ●

●

● ●
● ●

● ● ● ● ●

●

●

●
●

●

●
●

●

●

●

●

● ● ●
● ● ●

●

● ●

●

● ● ●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

● ● ●

●

● ● ● ● ●
●

● ● ●● ●●
● ●

● ● ●
●

●
● ●

●

● ●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

● ●

●

●

●
●

●
● ●

●

●
●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●
● ●
●●

●

●

●
●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
● ●

●
● ●

●

●

●
●

●
● ● ●

●
●

●

● ●
●

●

●

●

●

●

● ●
●

● ● ●
● ● ●

●

●

●

●

● ● ●

● ● ●

●

●

●

●
● ●

●
● ●

●

●

●

●

●
●

● ●
● ●

●

●

●

● ●
●

● ●
● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●
●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●
● ● ● ●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ●

●

●

● ●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ●

●

●
●

●

● ● ● ● ● ●

●

●

●

●
●

●

●

●
● ●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

● ● ●

●
● ●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
● ●

● ● ●

●

●

●

●

●
● ● ●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●
●
●

●

●
●

● ● ● ●
● ● ●

●

● ● ●
●

● ● ● ●
●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
● ●

●
● ●

●

●

●
●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ●
●

●

● ●

●

● ●
●

● ●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

● ●

●●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

● ●
●

● ● ● ●

●

●

●
● ●

● ●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ●

●

●

●
●

● ● ●
● ● ●

●

● ● ● ● ● ● ●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

● ● ● ●

●

●
●

●
●

●

● ● ● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●
● ● ●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
● ● ● ● ● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●
● ● ● ●
● ●
●

●

●
● ● ●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

● ●
● ●

●

●

●

●
●

●

● ● ● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
● ● ●

● ●

●

●

●

●

● ●
● ●

● ●

●

●

●

●

●

● ●

● ● ●
●

●
● ●

●

● ●

●
●

●

● ● ● ●

●

●
●

●

●

●

●
● ● ●

●

● ● ●

● ● ● ● ● ● ● ● ● ●● ● ● ● ●

●

● ●

● ●

●
●

●

●
●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●●

● ●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ● ●

●

● ●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●
● ●

● ● ● ● ● ● ●

●
●

● ● ●

●

● ●

●
●

●

●

●

●
●

●
●●

●

●
●

●

● ●
● ● ●

●
● ● ●

●
●

●

●

●

● ● ●

●
● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●
●

● ● ●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

● ●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

● ● ●

●

●

●
●

●

● ● ●
● ● ● ● ●

●

●

● ●
●

● ● ● ● ● ●

●

●
● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ● ● ●

● ● ●
● ● ●

●
●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ●
● ● ● ● ●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

● ● ●
● ● ● ● ●

●

●

●
● ●

● ● ● ● ●

●

●

●

●
●

● ● ● ●
●

●

●
●

●

●
● ● ●

● ●

●

●

●
● ● ● ●

●
● ●

●

●

●

●
● ●

● ●
● ●

●

●

●

● ● ● ●
●

● ●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ●

● ● ● ● ● ● ●

● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●
●

● ●
● ●

●
●

●

●
● ● ● ●

●

●

● ● ●
● ●

●

● ●
● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

● ●

●

●

●

●

● ●

●

●
●

● ● ●
● ●

●

●

● ●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

● ● ●

●

●

● ● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
● ●

●

●
●

●
●

●

●

● ●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

● ●
●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●
●

●
●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●

● ●

●

●

● ●

●

●

●

● ●●
●

●

●

●

●
● ●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

● ●

●
●

● ●

●

●●

●
●

●

●
●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

● ●

● ● ● ●

●

●

● ●

●
●

●
●

●
●

●
●

●
● ●

●
● ●

●
●

●

●
●

●
●

●
●

●
● ●

●

●

● ●
●

● ●
● ●

●

●

●
●

● ●
● ●

●

●
●

●

● ●

●

●
●

●

●
●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

● ●
●

● ● ● ●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

● ●

●

●●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
● ● ●
● ●
●

●

●

●

●

●

●

●

●●

● ● ● ● ● ● ● ● ● ●● ● ● ●
●

● ●●
●

●

●

● ●

●
●

●

●
● ●

●

●

●
● ●

● ● ● ● ●

●

●

● ●
● ● ● ● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●
●

● ●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Approximation Coefficient(K)

C
ov

er
ag

e

● data points
average line

Figure III : algorithm performance as function of
approximation coefficient

We perform analysis using randomNode engine, by
performing clustering on 1000 top-scoring keywords in
given dataset, varying the approximation coefficient in the
(0.1, 1.0) range with 0.1 step and calculating the coverage
metric. The results are shown in Figure III, with scatterplot
showing exact coverage values for each of each sample in-
stance and the average coverage, given by the line segment.
We observe that the coverage increases logarithmically
with the approximation coefficient, which indicates that the
algorithm can provide acceptable approximations, even for
the small values of K. Finally, we use the randomNode
engine to extract a set of queries, shown in Table II,
representing top-scoring clusters, both in terms of results
and a cluster coverage, for a given subset of .yu Web.

TABLE II
TOP CLUSTERS IN RANDOMNODE DATASET

query coverage n.links incluster n.clusters max size
politika 0.999 37473 37417 29 820
pravda 0.967 34688 33556 43 682
rubrike 0.995 33200 33053 13 817
shop 0.967 29440 28482 88 549

nekretnine 0.989 28451 28157 30 535
leasing 0.988 28185 27847 35 272
dekanat 0.947 28783 27264 63 326
banking 0.965 26840 25916 120 211

expo 0.963 26456 24629 69 273
filologija 0.976 23160 22609 39 625

ACKNOWLEDGMENT

Thanks to prof. Veljko Milutinovic, who mentored this
research as a part of my diploma thesis at the faculty of
Electrical Engineering, Belgrade.

REFERENCES

[1] G. Pandurangan, P. Raghavan and E. Upfal, Using PageRank to
Characterize Web Structure Internet Mathematics Volume 3, Number
1, 2006

[2] M. Hearst, and J. Pedersen, Reexamining the cluster hypothesis:
scatter/gather on retrieval results Proceedings of the 19th annual
international ACM SIGIR conference on Research and development
in information retrieval, 1996

[3] L. Li and Y. Shang, Improvement of HITS-based Algorithms on Web
Documents Proceedings of the 11th International World Wide Web
Conference, 2002

[4] J. Huang, T. Zhu and D. Schuurmans, Web Communities Identification
from Random Walks Lecture Notes in Computer Science, Knowledge
Discovery in Databases: PKDD 2006, Volume 4213, 2006

[5] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener, Graph structure in the web
: Experiments and models Proceedings of the Ninth Conference on
World Wide Web, pages 309320, 2000

[6] R. Baeza-Yates, C. Castillo and V. Lopez, Characteristics of the Web
of Spain Cybermetrics, Vol. 9, No. 1, 2005

[7] V. Gomez, A. Kaltenbrunner and V. Lopez, Statistical analysis of the
social network and discussion threads in slashdot Proceeding of the
17th international conference on World Wide Web, 2008

[8] A. Clauset, C.R. Shalizi, and M.E.J. Newman, Power-law distribu-
tions in empirical data E-print (2007). arXiv:0706.1062

[9] U. Br, M. Gaertler and D. Wagner, Experiments on graph clustering
algorithms Lecture notes in computer science, Springer-Verlag, 568-
579, 2003

[10] H. Djidjev, A scalable multilevel algorithm of graph clustering and
community structure detection Fourth Workshop on Algorithms and
Models for the Web-Graph, 2006

[11] F. Chung and L. Lu, The Average Distance in a Random Graph
with Given Expected Degrees Internet Mathematics Vol. I, No. I :
91-114, 2002.

[12] F. Chung, L. Lu, and V. Vu The Spectra of Random Graphs With
Given Expected Degree Proceedings of National Academy of
Sciences, 100:6313-6318, 2003

774

